Partenaires

Logo ens
CNRS
Logo P6
Logo P7

 


Rechercher

Sur ce site


Laboratoire Pierre Aigrain

Accueil du site > La recherche au L.P.A. > Physique du vivant > Groupe de Biophysique > Publications > Unravelling the Mechanism of RNA-Polymerase Forward Motion by Using Mechanical Force.

Unravelling the Mechanism of RNA-Polymerase Forward Motion by Using Mechanical Force.

[Phys. Rev. Lett. 94, 128102 (2005)]

Philippe Thomen, Pascal J. Lopez, and François Heslot

Polymerases form a class of enzymes that act as molecular motors as they move along their nucleic acid substrate during catalysis, incorporating nucleotide triphosphates at the end of the growing chain and consuming chemical energy. A debated issue is how the enzyme converts chemical energy into motion [J. Gelles and R. Landick, Cell 93, 13 (1998)]. In a single molecule assay, we studied how an opposing mechanical force affects the translocation rate of T7 RNA polymerase. Our measurements show that force acts as a competitive inhibitor of nucleotide binding. This result is interpreted in the context of possible models, and with respect to published crystal structures of T7 RNA polymerase. The transcribing complex appears to utilize only a small fraction of the energy of hydrolysis to perform mechanical work, with the remainder being converted to heat.

Voir en ligne : Abstract